
Barishal University Journal Part 1, 5(1&2): 179-193 (2018) ISSN 2411-247X

179

AN APPROACH FOR MEASURING SIMILARITY OF UML

CLASS DIAGRAMS

Md. Samsuddoha
*
 and Rahat Hossain Faisal

Department of Computer Science and Engineering, University of Barishal,

Barishal-8200, Bangladesh.

Abstract

Assessment of software similarity is one of the ideal approaches to utilize experiences of

effectively developed software for different purposes. Experiences obtained from

previous projects can help software industries to deliver software project in a short period

of time to minimize the cost and time. Similarity measurement can be one of the solutions

to reuse the previous developed technique, code and different methods. Unified Modeling

Language (UML) is used widely in software engineering where class diagrams are the

top notation to present the core structure of any software system. In this paper, a UML

class diagram measuring approach is proposed based on the systematic integration of

structure based and component based matching that shows the similarities among the

UML class diagrams. An experimental analysis has been conducted for evaluating the

applicability of the proposed approach. The experiment justifies the approach that leads

to the correct measurement. The experimental analysis was performed using seven

different real life software projects by running a developed framework. The analysis

shows that the precision, recall and F-measure of the tool are 0.83, 1 and 0.91

respectively which concludes that the proposed approach performs well.

Keywords: Similarity Metric, UML Class Diagram, XML, Similarity Measurement

Introduction

In today’s fast changing business environment, software industries attempt to rapidly

develop their products so that they can speed up the delivery of their latest innovations to

customers. This makes software development more challenging as software developers

need to design, implement, and test complex software systems as early as possible. As a

*
Corresponding author’s e-mail: msamsuddoha@bu.ac.bd

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) An Approach for Measuring

180

result, software companies are in search of some solutions that can help to deliver good

quality and error free software in right time.

Reuse of previous developed model can help to achieve the goal. In this purpose,

searching of similar projects those were developed earlier can help to find out proper

model. Models in software development allow engineers to downscale the complexity of

the software systems. In early stage of software development model provide great reuse

potential (Ahmed et al., 2011). During the development of specification of any software

project, there are a set of UML diagrams being developed those describe its structural,

behavioral and functional perspectives. Class Diagrams represent the structural

perspective of a project. In this paper, we focused on UML class diagram to measure the

similarity among different software projects.

Overtime, industries are growing with large collections of model. These model represent

different development concerns. Furthermore, these models are considered as a main

source of knowledge which is retrieved from the minds of stakeholders. This knowledge

is reused each and every time when a new software is created. Even, when comparing

software systems, we usually find 60% to 70% of software products are functionally

common (Tracz et al., 1998). From this fact, we can say that is very effective to use the

previous knowledge during development of any new software product which will help to

reduce the cost and time. Therefore, it is of paramount importance to have a systematic

way to access and reuse existing software models in an effective way. One way of using

these model is to measure the similarity with the existing. Another way is to have an

efficient repository along with efficient retrieval mechanism. In all cases, similarity

measurement is a fundamental operation.

Assessment of similarity is the task of identifying semantic correspondences between

elements of two models (Chechik and Sabetzadeh, 2012).This task is error-prone due to

the fact that these models represent similar functionalities as the model are developed

independently by different developers and also time consuming. Therefore, their

similarity and differences must be accurately quantified to find the appropriate match.

Over the time, different metrics as well as different matching algorithms have been

proposed in the literature to identify the similarity and the differences of the models to be

matched, especially for UML diagrams (Alanen et al., 2003; Xing et. al, 2005;

Walkinshaw et al., 2009 and Salami et al., 2012).

In this research, a method to measure similarity between Class Diagrams is proposed

based on the structure and component. The proposed method computes similarity

between intended class diagram with previous developed diagram to use previous

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) Samsuddoha and Faisal

181

knowledge. To measure similarity score, a framework is developed. This framework

measures similarity into two phases. In first phase, UML diagrams are parsed by an XML

parser and converted to XML files format. In second phase, similarities between

diagrams are measured by comparing the structure and different components of UML

class diagram to obtain similarity. Each of the diagrams are compared separately and

finally the similarity score is measured by integrating all comparison results.

Experimental analysis has been conducted for evaluating the applicability of the proposed

approach. The experiment justifies the approach that leads to the correct measurement.

The experimental analysis was performed using seven different real life software projects

by running the developed framework. The analysis shows that the precision, recall and F-

measure of the tool are 0.83, 1 and 0.91 respectively.

The rest of the paper is structured as follows: Section two describes the related work on

existing similarity measurement approaches and techniques. Some problems also figured

out from the existing literature and some critical judgments also described. In section

three, the proposed approach has been described in different subsections. The proposed

approach is demonstrated with some necessary diagrams and algorithms. Fourth section

presents the result analysis and validation of the proposed approach. Finally the

conclusion of this research is presented in the fifth section.

Related Work

Many methods have been proposed on measuring similarity and retrieving reusable

assets. This section describes some existing work on similarity measurement of UML

class diagrams.

Several numbers of methodologies for comparing UML specifications have been

proposed. Tsantalis et al., has been proposed design pattern detection approach based on

UML class diagramby measuring similarity (Tsantalis et al., 2006). Their approach

consisted of agraph-matching algorithm used to compare two UML diagrams. Another

technique for detecting differences between UML class diagrams and to visualize those

differences using color as part of the incremental development process has been

presented in (Girschick at. al, 2006). Robinson et al., presented an interesting approach

for comparing UML sequence diagrams, based on transforming them to a SUBDUE

graph, in order to perform general information retrieval (Robinson and Woo, 2004).

A fuzzy logic based approach was proposed for measuring similarity between two

software projects in (Idri and Abran, 2001). The approach was used for categorical data

and the categorical data was described by a fuzzy sets. Fuzzy reasoning was used to

compute the different measures and those were validated byan axiomatic validation

approach and similarity between two projects were measured for categorical data. Idri et

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) An Approach for Measuring

182

al., proposed an approach based on fuzzy logic using linguistic quantifiers (Idri and

Abran, 2001) that improved the work in (Idri and Abran, 2001). It claimed that most of

the software projects cannot be used for measuring similarity when the projects are

described by the linguistic quantifiers and overcame the problem. Authors stated that

similarity between two software projects are not null and built a rule based engine for

each attribute to find distance. This work used only linguistic values to measure similarity

between two software projects.

Method for documenting continuous integration of software covering various perspective

have been highlighted in (Danieland Bosch, 2014). The authors identified differences in

continuous integration procedures in different types of software and proposed a model to

document those. However, assuming the need to preserve reliability during continuous

integration through studying historical projects have been considered to a limited extent.

Two approaches for measuring similarity between software projects based on fuzzy C-

means clustering and fuzzy logic were presented in (Azzeh et al., 2008). The proposed

approaches overcame the problems of nearest neighborhood techniques. First approach

was developed based on identification features of fuzzy sets and second approach was

based on partition matrix that is obtained by fuzzy C-means. They stated that first

approach outperforms second approach based on their experimental results. This

approach is not applicable for linguistic values and only suitable for numerical and

categorical data.

Some specific research has been done for computing difference between class diagrams.

A generic difference algorithm is proposed for computing similarity of two UML models

which were encoded in XML les from de-sign diagram (Kelter, 2005). The implemented

algorithm performed well on runtime for small documents but not good for large

documents. A comparative result were presented using basic graph by denoting node and

edge. In this approach, at first the elements of each document were detected and then

calculated similarity by a defined function that worked with some predefined criteria.

Weight was defined for each criteria in a way that may mislead to a missed

correspondences.

Some other works have been presented that uses design diagrams for various purposes

(Nahar and Sakib, 2014) and (Nahar and Sakib, 2015). Nadia et al., proposed an

automated test generation framework named as SSTF that used the design diagrams

(class, state and sequence diagrams) and the software source code (Nahar and Sakib,

2014). This tool used an XML converter to convert the UML diagrams in XML format,

and identified the required information of test case semantics from those XMLs. Another

work from the author was to recommend software design patterns using the design

diagrams (class and sequence diagrams) (Nahar and Sakib, 2015). A tool named ADPR

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) Samsuddoha and Faisal

183

was proposed in this paper, which detected anti-patterns in soft-ware design and

recommended the corresponding design patterns. Here the XMLs of the class diagrams

were stored in the tool as 2-dimensional matrices of prime numbers for maintaining the

cardinality of the class relationships. Both these papers are the examples of usefulness of

design diagrams for various purposes.

The uses of UML diagram is increasing day by day in the architecture and design phases

of software engineering since its inception (Idri and Abran, 2001). When using UML,

software systems are described by constructing a set of diagrams. Usually, these diagrams

are created independently and typically contained overlapping information. As a result, it

is a challenging task to measure the appropriate similarity between UML diagrams.

Without appropriate means for assessing the similarity between diagrams, inconsistencies

are likely to arise or even worst remain undetected when they arise. The inconsistency

between UML diagrams increases the chance of errors and potentially wrong similarity

values between software designs projects. To solve those problems several researches

have been done but they have some limitations. In this research, we proposed a different

approach that can overcome those problems.

Similarity Measurement Approach

Class Diagram shows the static structure of a software system. It describes the system

classes and interrelationships i.e. association, aggregation and generalization among

objects, attributes and operations of the classes (Szlenk et al., 2006). In this section we

presented an approach for computing similarity between two class diagrams encoded as

XML files. Similarity of class diagram is measured based on the similar features between

query and repository diagrams of different projects. The similarity between the query and

the existing class diagrams of software projects in the repository are computed through a

numeric computation and the computed value lies between 0 and 1. The proposed

approach describes two similarity measures for computing the similarity during the multi-

view similarity assessment. In this section we have discussed those measures into two

phases. In the first phase, the similarity is calculated based on the structural view

matching of class diagrams where the relationships were considered. In the second phase,

the similarity is calculated based on the different components of class diagram where

number of attributes, number of methods, number of relationships and number of classes

were considered. Each of the phases is discussed in the subsequent subsections.

Structure based Matching

For structural matching of two classes, the class diagrams are presented as graph. In the

view of a class diagram, the whole system can be compared by relationships of classes.

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) An Approach for Measuring

184

At first, class diagrams of a system are converted to XMLs and inputted to the tool. Then

elements are parsed by an XML parser to proceed the next step. Hence, classes are

considered as nodes and relationships are as edges. As there are different relationships

exist among classes, so the edges should be weighted. For structural matching in the first

step, matrix for a class diagram is retrieved from the main diagram. For keeping these

relationship information a two dimensional matrix is used. The matrix is n x n prime

numbered matrix as noted by Dong et al. (Dong, Jing and Yajing Zhao, 2007). Here, the

usage of prime number is for following cardinality of the relationships when multiple

relationships exist between two classes.

Table 1. Assigning Prime Number for Class Relationship.

Class Relationship Prime Number

Association (As) 2

Generalization (G) 3

Aggregation (Ag) 5

As product of prime numbers is unique, it is possible to identify the types of the multiple

relationships between classes. For example, Figure 1 shows two class diagrams and

relations among each class of each diagram. Class diagram (a) has three associations, two

aggregations and one generalization relationships among classes. Class diagram (b) has

two associations, two aggregations and two generalizations relationships among classes.

Multiple relationship between two classes are stored by their product value as products of

prime numbers are unique, it can express the relationship types in existence of multiple

relationships as well. Table 1 represents the defined prime value for each relationship.

These prime value are used to represent the relationship between classes in matrix.

Fig. 1. Example of Class Diagram- (a) Diagram one & (b) Diagram two.

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) Samsuddoha and Faisal

185

Fig. 2 represents the generated matrix of the Figure 1 where Figure 2 (a) presents the

matrix of class diagram 1 (a). The relationship among classes of figure 1(a) is as

following:

 𝐴
𝐴𝑔
 𝐷, 𝐴

𝐴𝑠
 𝐶, 𝐵

𝐴𝑔
 𝐶, 𝐷

𝐴𝑠
 𝐶, 𝐷

𝐺
 𝐸, 𝑎𝑛𝑑 𝐶

𝐴𝑠
 𝐸

Fig. 2 (b) presents the matrix which is generated from figure 1(b). The relationship

among classes of figure 1(b) is as following:

𝐵
𝐴𝑔
 𝐴, 𝐵

𝐴𝑠
 𝐶, 𝐴

𝐴𝑔
 𝐶, 𝐴

𝐺
 𝐺, 𝐴

𝐺
 𝐹, 𝑎𝑛𝑑 𝐶

𝐴𝑠
 𝐹

Fig. 2 : Generated Matrices of Class Diagram from Fig. 1.

After generating the matrix, the similarity is calculated based on the maximum matching

of two class diagrams. For finding out the matching, we have implemented a customize

Breadth First Search (BFS) algorithm as noted by Smith et al. (Smith and Plante, 2012).

Then, the similarity score from the highest matching is calculated using a simple Jaccard

Similarity equation (Jaccard, 1912). The highest number of classes found from the

matching algorithm is divided by total number of classes for calculating similarity by

structural matching. For example, Figure 1 represents two class diagrams and the

similarity value obtains using this algorithm from the figure is 4/5. Because, from this

figure, we get maximum 4 matching and highest number of classes in each diagrams

are 5.

The algorithm is presented at Algorithm 1 which shows the whole matching process of

structure. For structural matching, the matrix is generated in (Algorithm 1 Line 6).

The value of edges are assigned based on relationship between classes (Algorithm 1 Line

8-17). Similarity assessment approach is presented at (Algorithm 1 Line 19).

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) An Approach for Measuring

186

Algorithm 1. Structure Based Matching

Input: XMLs (CD)

Result: Simstr

Initialize𝑚𝑎𝑡 𝑢 𝑣 ← 0

Initialize S𝑒𝑡𝑜𝑓𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑅

for edges(u,v) in diagrams do

mat[u][v] ← getValues(2)

end for

procedure GETVALE

 if 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∈ 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 then

 setValue=2

 else if 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∈ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 then

 setValue=3

 else if 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∈ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 then

 setValue=5

 end if

end procedure

Sim str← 𝑚𝑎𝑡𝑐𝐵𝐹𝑆()

Component based Matching

In Component Matching of class diagrams, at first we have selected some common

criteria those are comparable between two classes. Based on these criteria, a similarity

function has been defined to measured similarity. Some criteria of measuring similarity

between two classes are noted by Ketle et al., (Kelter et al., 2005) and author also defined

function for these corresponding criteria.By following this approach, we have defined

criteria for our approach. The selected criteria for our approach are: Number of

Attributes, Number of Operations, Number of Classes and Relationships.

However, we only considered Number_of_Attribute and Number_of_Operation for

criteria matching for class diagram as we have considered relationships in the structural

matching and measured similarity using number of classes. We also defined a function

for measuring similarity that is demonstrated in the Algorithm 2.

Moreover, after structural matching we also used component matching because in every

cases, structural matching cannot provide accurate similarity score. Thus, quantitative

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) Samsuddoha and Faisal

187

value needed to be considered as an important fact of measuring similarity of class

diagram.

A criteria matching algorithm is developed that is shown in Algorithm 2. For measuring

criteria similarity, a class of first diagram is compared with all of the classes of the

second diagram and stored in a matrix. With the similarity score anxn matrix is formed.

Algorithm 2: Component based Matching

Input: XMLs (CD)

Result: Simcom

Initialize 𝑚𝑎𝑥 ← −1

Initialize S𝑒𝑡 ← 𝑅

for 𝑖 ← 1 𝑡𝑜 𝑛do

 𝑚𝑎𝑥 ← −1

 𝑚𝑎𝑡𝑐𝑒𝑑𝐼𝑡𝑒𝑚 ← 𝑁𝑈𝐿𝐿

 for 𝑗 ← 1 𝑡𝑜 𝑚do

 if𝒆 𝒋
′ ∉ 𝑹 then

 𝑠𝑐𝑜𝑟𝑒 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑒𝑖 , 𝑒
′
𝑗)

 If 𝑚𝑎𝑥 < 𝑠𝑐𝑜𝑟𝑒then

 𝑚𝑎𝑥 ← 𝑠𝑐𝑜𝑟𝑒

 𝑚𝑎𝑡𝑐𝑒𝑑𝐼𝑡𝑒𝑚 ← 𝑒𝑗

 End if

 End if

 End for

 If 𝑚𝑎𝑡𝑐𝑒𝑑𝐼𝑡𝑒𝑚 ! = 𝑁𝑈𝐿𝐿then

 𝑹 = 𝑹 ∪ {𝒆′
𝒋 ⟼ 𝑚𝑎𝑡𝑐𝑒𝑑𝐼𝑇𝑒𝑚}

 Simtemp+ = max

 Simcom=Simtemp/numberofItem

 End if

Endfor

All the time number of classes of a diagram will not same as comparing with class. As a

result anxn matrix need to generate. Then the similarity score is measured by parsing the

matrix. The highest value between two classes are selected and the same class cannot be

matched with any other class of the second diagram. The criteria similarity score is

calculated (Algorithm 2 Line 20).

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) An Approach for Measuring

188

Finally the total similarity is calculated by integrating the value of Simstr (Structure based

matching) and Simcom (Component based matching).We have used only arithmetic mean

for measuring similarity score because there is no impact using arithmetic mean that is

proved experimentally in the result section. A function is defined for calculating the score

which is presented in the equation 1.

𝑆𝑖𝑚(𝐶1, 𝐶2) = 𝑊 ∗ 𝑆𝑖𝑚𝑠𝑡𝑟 (𝐶1, 𝐶2) + (1 − 𝑊) ∗ 𝑆𝑖𝑚𝑐𝑜𝑚 (𝐶1, 𝐶2) ------------ (1)

Here, C1 and C2 defined the respected class diagrams those will be compared. W is the

weight of each stage. As we used arithmetic mean for measuring similarity, so there is no

effect of W in this equation. Simstr is the similarity score retrieved from structure based

matching and Simcom is the score obtained from component based matching. In the next

section an experiment have been conducted for validate the proposed approach.

Experiment

This section presents the experiment with requirements to evaluate the similarity

approach and compare the result with some existing methods. The experiment has been

conducted on some UML class diagrams of some software project collected from

different sources. Initially the data have been encoded into XML files and similarity has

been computed. Towards this aim a framework has been developed in java language.

A. Experimental Data

The analysis was performed on 7 different software project requiring different diagrams

those are used in this research. These projects have been collected from the student of

Institute of Information Technology, University of Dhaka. Table II presents the project

name along with class diagrams information. The collected datasets have been encoded

into xml files as the developed framework took xml file as input. For converting UML

diagrams into XML files we have used an open source converter Star UML. The dataset

is uploaded into github which is available here (Dataset, 2018).

Table 2. Experimental Dataset Description.

Serial Project Name #Class diagrams

1 Inventory Management System (IMS) 5

2 Student Information System (SIS) 6

3 AmaderChakri.com (AC) 9

4 Program Office Management System (POMS) 5

5 Library Circulation System (LCS) 7

6 Cricket Circle (CC) 4

7 Cloud Portal (CP) 6

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) Samsuddoha and Faisal

189

Result and Discussions

For experimental result, dataset projects were run using the developed framework. The

similarity score was measured between two class diagrams. In the dataset, among 7

project IMS is the selected for query and other projects as repository where class diagram

of IMS will be compared with other projects. Table 3 presents the similarity value of

class diagrams were calculated using the developed framework. In this table, first column

presents the query project (QP) and second column presents the repository project (RP).

Table 3. Similarity score of UML Class Diagram.

QP RP Simstr Simcom Similarity Score

IMS

SIS 0.79 0.84 0.82

AC 0.49 0.63 0.56

POMS 0.71 0.81 0.76

LCS 0.77 0.81 0.79

CC 0.41 0.51 0.46

CP 0.42 0.53 0.48

Structure based similarity score is presented in the third column (Simstr) and component

based score is presented in fourth column (Simcom). Last column presents the desired

output obtained from the developed framework. Table 3 showed that the highest

similarity is found between class diagram of IMS (Query project) and SIS (Comparable

project). Now, we can sort the project based on their similarity score which is obtained

from their class diagram comparison. From the table it is very clear that IMS is mostly

similar to SIS and less similar to CC. Main purposes of this research is to find the best

similarity among projects based on the class diagram. This result will help the software

industry as well as researchers to reuse previous developed tool, code, system and

different tools. For example, when the project SIS was developed, the quality assurance

engineer used a testing tool T. From the table 3 it is very clear that IMS is mostly similar

to SIS, so during the testing of IMS the testing tool T can be used (based on the

recommendation of this research).For experimental analysis, the developed framework

and dataset is available on (Implementation, 2018 and Dataset, 2018).

Evaluation of the Proposed Approach

For the justification of this approach, an empirical analysis was performed. We took

helped from software experts (two software analysts from software industry) to conduct

the evaluation process. We measured precision, recall and f-measure for justified this

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) An Approach for Measuring

190

developed approach. For these purposes, the result obtained from the developed approach

is considered as actual result and the similarity result performed by design experts is

expected result. Table 4 presents the expected result and actual result that was performed

by the developed approach and the expert. After a deep analysis and discussion with

experts, we concluded that the system provide similarity more than 60 % is similar to

projects. However, similar projects were chosen based on a threshold value that is greater

than or equal 0.6 (threshold ≥ 0.6) suggested by expert. Now, from the actual and

expected result that is shown in the Table 4, the precision and recall of proposed method

can be measured.

Table 4. Result analysis.

QP RP Actual Result

(threshold≥0.6)

Expected Result

(Expert)

IMS

SIS Yes Yes

AC Yes No

POMS Yes Yes

LCS Yes Yes

CC No No

CP No No

Let, tp =true positive, fp =false positive, fn=false negative. From Table 4 we got tp = 5,

fp = 1, fn = 0.Thus,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
=

5

5 + 1
= 0.833

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
=

5

5 + 0
= 1

As, proposed method provides 1 false positive result, it possesses the precision 0.833

and1 false negative result which possesses the maximum recall. Using the precision and

recall, the F-measure or the balanced F-score (F1score) can be calculated.

𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2.

0.833 ∗ 1

0.833 + 1
= 0.91

The analysis shows that it can effectively determine similarity since it has an excellent

indicator with a precision of 0.83, recall of 1 and F-measure of 0.91 respectively which

concludes that proposed approach for measuring similarity of UML class diagram

performs well.

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) Samsuddoha and Faisal

191

Threat to Validity

Some validity threats have been discussed for our proposed approach using the

classification suggested by (Wohlin et al., 2012). First threat comes from the issues of

data sets used in this research. As, we have worked on some UML diagrams from

different SRS document of project those were collected from others. So, we have no

control on the quality of the issues collected. Overall, we have tried to reduce this threat

by modifying some diagrams to achieve the standard.

The second threat comes from the unstructured data sets as our collected datasets were

not prepared by same person. Using defect data sets predicting result may deviate from

actual result. However, we considered the selected projects stable in production. This

problem is considered as an internal threat for this thesis because our proposed method

need proper design diagrams for better performance during the evaluation of result.

Besides this internal threat, we have identified an external threat for this research that is

using the in-house class room projects. Due to the unavailability we cannot use the

industrial project for the assessment of our proposed system.

Finally, we have identified another threat in the similarity approach. As we considered

structure based and component based matching during the similarity calculation, it may

provide contradict similarity. In that case, a good similarity score may be found in spite

of being different projects.

Conclusion

Reuse of software can minimize the cost and time during development of any software.

This benefit can be maximized if it is carried out at the early phase of development.

Similarity is one way to provide the opportunities to reuse previous developed resources

and this task can be done in early phase of development using UML diagrams. Therefore,

the most important task of the comparison of two models is exactly the UML class

diagram comparison and evaluation. There are a very few methods how to compare the

UML class diagrams and they don’t provide a valuable result.

This paper focused on an approach for measuring similarity between UML class

diagrams with an aim to reuse resources during the development of any project. The

approach is based on the structure and component metrics of UML class diagrams that is

described in details in the methodology section. An empirical analysis has been

conducted to evaluate the process. Moreover, for the justification of the proposed

approach the precision, recall and F-measure were calculated that possesses a precision of

0.83, recall of 1 and F-measure of 0.91. The result shows that the proposed approach

performs well. Currently, our approach is based on structure and component based

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) An Approach for Measuring

192

matching, in future different matching metric can be considered to improve the matching

accuracy. Additionally, the results of this research need to be investigated based on some

real life industry dataset. Moreover, the similarity of other UML diagrams such as

sequence diagram and state transition diagram need to be calculated to measure the

similarity among software projects.

References

M. Ahmed. 2011. Towards the development of integrated reuse environments for UML

artifacts. Sixth International Conference on Software Engineering Advances, pp.

426-431.

W. Tracz. 1998. Software Reuse: Emerging Technology. New York: IEEE Press.

M. Chechik, S. Nejati, and M. Sabetzadeh. 2012. A relationship-based approach to

model integration. Innovations in Systems and Software Engineering. 8: 3-18.

M. Alanen and I. Porres. 2003. Difference and union of models. UMLP. Stevens, J.

Whittle, G. Booch, Ed. Springer. 2863: 2-17.

Z. Xing and E. Stroulia. 2005. UMLDiff: An algorithm for object-oriented design

differencing. 20th IEEE/ACM International Conf. on Automated Software

Engineering (ASE ’05). pp. 54-65.

K. Bogdanov and N. Walkinshaw. 2009. Computing the structural difference between

state-based models. WCRE ’09 Conf., IEEE. pp. 177-186.

H. O. Salami and M. A. Ahmed. 2012. A framework for class diagram retrieval using

genetic algorithm. 24th International Proceedings of Software Engineering and

Knowledge Engineering (SEKE'12). pp. 737-740.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., & Halkidis, S. T. 2006. Design pattern

detection using similarity scoring. IEEE transactions on software

engineering. 32(11): 896–909.

Girschick, Martin, and Tu Darmstadt. 2006. Difference detection and visualization in

UML class diagrams. Technical university of darmstadt technical report TUD-CS-

2006-5. (2006): 1-15.

Robinson, W.N. and Woo, H.G., 2004. Finding reusable UML sequence diagrams

automatically. IEEE software, 21(5): 60-67.

Idri A, Abran A. 2001. A fuzzy logic based set of measures for software project

similarity: validation and possible improvements. Seventh International Software

Metrics Symposium, METRICS 2001. IEEE. pp. 85-96.

Idri, Ali, and Alain Abran. 2001. Evaluating software project similarity by using

linguistic quantifier guided aggregations. IFSA World Congress, 20th NAFIPS Int.

Conference, IEEE. 1: 470-475.

Barishal University Journal Part 1, 5(1&2): 179-193 (2018) Samsuddoha and Faisal

193

Sthl, Daniel, and Jan Bosch. 2014. Modeling continuous integration practice differences

in industry software development. Journal of systems and software (JSS), Elsevier.

87: 48-59.

Azzeh, Mohammad, Daniel Neagu, and Peter Cowling. 2008. Software project similarity

measurement based on fuzzy C-means. International Conference on software

process, Springer. pp. 123-134.

Kelter, Udo, JrgenWehren, and JrgNiere. 2005. A Generic Difference Algorithm for

UML Models. Software Engineering. 64(105-116): 4-9.

Dataset, 2018.https://github.com/samsuddoha/ThesisDataset.

Nahar, Nadia, Kazi Sakib. 2014. SSTF: A novel automated test generation framework

using software semantics and syntax. In Computer and Information Technology

(ICCIT), IEEE. pp. 69-74.

Nadia Nahar and Kazi Sakib, 2015. Automatic Recommendation of Software Design

Patterns Using Anti-patterns in the Design Phase: A Case Study on Abstract

Factory. QuASoQ/WAWSE/CMCE@ APSEC. pp. 9-16.

M. Szlenk, 2006. Formal semantics and reasoning about uml class diagram. IEEE. pp.

51-59.

Dong, Jing, Dushyant S. Lad, and Yajing Zhao, 2007. DP-Miner: Design pattern

discovery using matrix. In Engineering of Computer-Based Systems, ECBS'07.

14th Annual IEEE International Conference and Workshops, IEEE. pp. 371-380.

Implementation, 2018. https://github.com/samsuddoha/ThesisImplementation.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. and Wesslén, A.,

2012. Experimentation in software engineering. Springer Science & Business

Media.

P. Jaccard, 1912. The distribution of the flora in the alpine zone. New philologist. 11(2):

37-50.

Smith, S., D. R. Plante. 2012. Dynamically recommending design patterns. SEKE. pp.

499-504.

